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Abstract. The fragmentation functions of quarks and gluons into photons are studied beyond the Leading
Logarithm approximation. We address the nature of the initial conditions of the evolution equation solu-
tions and study problems related to factorization scheme invariance. The possibility of measuring these
distributions in LEP experiments is discussed, and a comparison with existing data is made.

1 Introduction

The fragmentation of quarks and gluons into photons can
be observed in e+e− annihilation experiments and in the
production of large-p⊥ photons in hadronic collisions. This
phenomenom is described by the distributions Dγ

q (z,M2)
and Dγ

g (z,M2) where z is the fractional momentum car-
ried away by the photon and M2 a time-like scale fixed
by the hard process (M2 ∼ Q2 in e+e−-annihilation and
M2 ∼ p2

⊥ for large-p⊥ photons). Unlike the fragmentation
into hadrons which are complex bound-states, the photon
has a known pointlike coupling to the quark. Therefore
we expect these distributions to be fully calculable in per-
turbative QCD. Witten was the first to show that this is
indeed the case [1], at least for M2 large enough to neglect
non-perturbative effects, and he wrote the Leading Loga-
rithm (LL) expressions for Dγ

a(z,M2) (a = q, g). In prac-
tice, it turns out that we need to know the fragmentation
functions in kinematical domains where M2 is not asymp-
totically large (M2 ∼ p2

⊥ ∼ 25GeV 2 in fixed-target direct-
photon experiments). These non-perturbative contribu-
tions and Beyond Leading Logarithm corrections (BLL)
to Witten’s LL results are sizeable. It is the purpose of
this paper to present a careful analysis of these effects
and a new parametrization of Dγ

q (z,M2) and Dγ
g (z,M2).

New experimental results justify the updating of an
analysis published some years ago [2]. Since then the LEP
collaborations studied in detail the quark fragmentation
into isolated hard photons; the inclusive fragmentation
functions Dγ

a(z,M2) should also be measurable [3]. On
the other hand new precise data on direct photon produc-
tion at large p⊥ has been [4], or will [5] be presented soon,
requiring more precise theoretical inputs. Finally it is now
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de Lyon, et au Laboratoire d’Annecy-le-Vieux de Physique des
Particules

possible to better constrain the non-perturbative part of
the fragmentation functions which is obtained by means
of the Vector Meson Dominance Model (VDM). Indeed,
new data on the inclusive ρ production at LEP [6,7] allow
a better control of this contribution.

The study of the fragmentation functions follows the
theoretical approach developed in the analysis of the
crossed reaction, namely the Deep Inelastic Scattering of a
virtual photon on a real photon, which probes the parton
contents of a real photon [8]. The good agreement between
theory and data obtained in this channel lets us hope to
derive sound predictions for the Dγ

a(z,M2) distribution.
Here we study only the inclusive fragmentation functions,
without any isolation condition around the photon. The
isolated case [9] raises theoretical problems concerning the
Infra-Red stability of the prediction [10, 11] that we do not
discuss in this paper.

2 Theoretical background

The fragmentation functions Dγ
a(z,M2) verify the inho-

mogeneous DGLAP (Dokshitzer, Gribov, Lipatov,
Altarisi, Parisi) equations [12, 13] (the convolution f⊗g(z)
is defined by

∫ 1
0 du dv f(u) g(v)δ(uv − z))

M2 ∂D
γ
ns,i

∂M2 = Cns,i Kγq + Pns ⊗Dγ
ns,i (1)

for the non-singlet sector (Cns,i = 2(e2i − < e2i >)), and

M2 ∂D
γ
q

∂M2 = Cs Kγq + Pqq ⊗Dγ
q + Pgq ⊗Dγ

g

M2 ∂D
γ
g

∂M2 = Cs Kγg + Pqg ⊗Dγ
q + Pgg ⊗Dγ

g (2)

for the singlet sector (Cs = 2Nf < e2i >), with Dγ
q =

Nf∑
i=1

(Dγ
qi

+ Dγ
q̄i

) and Dγ
ns,i = (Dγ

qi
+ Dγ

q̄i
) − Dγ

q /Nf . The
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inhomogeneous kernels have a perturbative expansion

Kγa(z,M2) =
α

2π

(
K(0)

γa (z) +
αs

2π
(M2) K(1)

γa (z) + · · ·
)
(3)

as do the homogeneous kernels Pab. The kernels Kγa are
given in [2], and the homogeneous ones can be obtained
from [14]. Let us notice that the coupling of the gluon to
the photon can only take place through a quark loop ;
therefore the expansion (3) of Kγg starts at order O(αs).

In the moment space (f(n) =
∫ 1
0 dz z

n−1f(z)), (1) and
(2) can easily be solved [15, 16, 17]. For instance for the
non-singlet distribution we obtain

Dγ,AN (n,M2) = C

∫ αs(M2)

αs(M2
0 )

dλ

β(λ)
Kγq(n)

×e
∫ αs(M2)

λ
dλ′

β(λ′) P (n) (4)

where we have dropped the suffixes ns and i. The suf-
fix AN means anomalous, a qualifier given by Witten
to the solutions of (1),(2) in order to characterize their
asymptotic behaviours. Indeed, with the definitions r =
αs(M2)/αs(M2

0 ) and dn = 2P (0)(n)/β0, the solution (4)
can be written, in the LL approximation,

Dγ,AN (n,M2) =
4π

αs(M2)
α

2π
C

β0

K
(0)
γq (n)

1 − dn

× (1 − r1−dn
)

(5)

an expression which explicitly displays an asymptotic be-
havior proportional to ln M2

Λ2 . In (5) we kept only the low-
est order term of the β-function:

M2∂αs/∂M
2 = β(αs) = −αs(β0αs/4π+β1(αs/4π)2+· · ·).

Expression (4) is not the full solution of the inhomoge-
neous equation (1) ; we can add to (4) a general solution
of the homogeneous equation (1) with Kqγ = 0, so that
the full solution is

Dγ(n,M2) = Dγ,AN (n,M2) +Dγ,NP (n,M2). (6)

The physical interpretation of expressions (4) and (6)
is the following: Dγ(n,M2) is given by the sum of a per-
turbative component Dγ,AN and of a non-perturbative
component Dγ,NP . Dγ,AN is fully calculable in pertur-
bative QCD, as long as M2 is large enough, M2 > M2

0
where M2

0 is the boundary between the perturbative and
non-perturbative domain. For M2 = M2

0 , the perturba-
tive approach is no longer valid and Dγ is given by a non-
perturbative fragmentation functionDγ,NP , which verifies
for M2 > M2

0 the homogeneous DGLAP equations.
The non-perturbative input Dγ,NP (n,M2

0 ) is not
known. We modelize it following VDM and we assume
(for M2 ≤ M2

0 ) that quarks and gluons first fragment into
vector mesons which then turn into photons. Therefore we
could write

Dγ,NP (n,M2
0 ) = α

∑
v=ρ,ω,φ

Cv D
v(n,M2

0 ) (7)

where the fragmentation functions Dv may be measured
in e+e−-annihilation experiments. The coefficients Cv are
fixed by VDM. The value of M2

0 is not known, but should
be of the order of an hadronic mass and we take M2

0 '
m2

ρ ' 0.5 GeV 2. The same approach in the crossed chan-
nel γγ∗ → X leads to predictions in good agreement with
data [8].

However the approach just described is too naive as
it is based on a LL approximation. At BLL order, the
decomposition (6) is not factorization scheme invariant,
and our VDM assumption (7) must be refined. Let us
study this problem which is related to BLL corrections
to the LL expression (5).

3 Non-perturbative input
and factorization scheme

We consider the one-photon inclusive cross-section in
e+e−-annihilation. It is given by the convolution between
the hard sub-process cross-sections Ca(z) and the parton
fragmentation functions [18]

1
σ0

dσγ

dz
=

Nf∑
i=1

e2i Cq ⊗ (Dγ
qi

(Q2) +Dγ
q̄i

(Q2)
)

+2
Nf∑
i=1

e2i Cg ⊗Dγ
g (Q2) + 2

Nf∑
i=1

e4i C
γ (8)

where σ0 = 4πα2/Q2. The hard cross-sections Cq(z) and
Cg(z), which have expansions in powers of αs(Q2)

Ca = δa,q +
αs

2π
(Q2) C(1)

a (z) + · · · (9)

also appear in the one-hadron inclusive cross-sections and
have been calculated in [19] (in (8) we consider the sum
of the transverse and longitudinal cross-sections). Cγ(z)
is characteristic of reactions involving photons and de-
scribes the direct coupling of the photon to quarks in
e+e−-annihilation. Its expression in the MS Factorization
Scheme (FS) can be obtained from [19]:

Cγ =
α

2π
1 + (1 − z)2

z
(ln(1 − z) + 2 ln z) . (10)

Actually it is well known that the fragmentation func-
tions and hard cross-sections are not univocally defined.
For instance, a part of Cγ can be absorbed in the fragmen-
tation functions, leading to a new photonic FS to which
correspond new functions D̃a and C̃γ . Each term on the
rhs of (8) is therefore FS dependent, but the sum is not,
being a physical quantity. It is easy to verify that this
implies that Dγ,NP in expression (6) is not FS invariant.
Such ambiguities appear also in the definition of coeffi-
cients Cq and Cg and kernels Pab. The influence of this
hadronic FS on the fragmentation functions was studied
in [8]. In this article, we will focus only on the difficulties
related to the photonic FS.
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In order to grasp this point more clearly, we calculate
(4) including BLL corrections. Expanding in powers of αs,
we obtain for expression (6)

Dγ(n,M2) =
α

2π
C

β0
K(0)

γq (n)

{
4π

αs(M2)
1 − r1−dn

1 − dn

+ 2
(
β1

2β0
dn − 2P (1)(n)

β0

)
1 − r1−dn

1 − dn

+ 2

(
(1 + dn)

β1

2β0
− K

(1)
γq (n)

K
(0)
γq (n)

− 2
P (1)(n)
β0

)

×1 − r−dn

dn

}
+ r−dn Dγ,NP (n,M2

0 ). (11)

By combining this result with (8) and keeping the relevant
terms proportional to (1−r−dn) and r−dn , we easily obtain
(for the non-singlet contribution and writing again Cns,i

instead of C)

1
σ0

dσγ

dz
(n) =

∑
i

e2i

{
Cns,i

α

2π
2
β0

(
(1 + dn)

β1

β0
K(0)

γq (n)

−K(1)
γq (n) − 2

K
(0)
γq (n)
β0

P (1)(n)

)
1 − r−dn

dn

+ Cns,i C
γ(n) +Dγ,NP

ns,i (n,M2
0 ) r−dn

}
+ · · ·

=
∑

i

e2i

{[
Cns,i C

γ(n) dn − Cns,i
α

2π
2
β0
K(1)

γq (n)
]

×1 − r−dn

dn
+
[
Cns,i C

γ(n) +Dγ,NP
ns,i (n,M2

0 )
]
r−dn

+ · · ·
}

+ · · · (12)

Expression (12) explicitly shows [20] that the combina-
tions Cγ(n)dn− α

2π
2
β0
K

(1)
γq (n) and Cns,i C

γ(n)+Dγ,NP
ns,i (n)

are FS invariant ; if we change the scheme, we must obtain

Cns,i C̃
γ(n)+ D̃γ,NP

ns,i (n) = Cns,i C
γ(n)+Dγ,NP

ns,i (n) (13)

and we clearly see that the “non-perturbative” component
cannot correspond to a VDM contribution alone, which
should be FS invariant.

In [8], we discussed the structure of Dγ,NP (actually
in the DIS channel) in detail and showed that it consists
of two parts. One part includes all the non perturbative
effects and is scheme independent. The other part depends
on the scheme and can be perturbatively calculated. It cor-
responds to the collinear part of Cγ . In this paper we quote
the result without proof, refering the interested reader to
the original paper [8].

Dγ,NP
ns,i (z,M2

0 ) = Dγ,V DM
ns,i (z,M2

0 )−Cns,i D
γ,MS(z) (14)

where

Dγ,MS(z) =
α

2π

(
1 + (1 − z)2

z

× (ln(1 − z) + ln(z)) + z

)
. (15)

Expression (14) is our initial condition at M2 = M2
0 .

A similar result can be obtained for the singlet sector with
Cns,i replaced by Cs. For the gluon fragmentation, we have
Dγ,NP

g (z,M2
0 ) = Dγ,V DM

g (z,M2
0 ).

The previous discussion is valid for light quarks. For
massive quarks, we neglect the VDM component. For in-
stance, we neglect the ψ-dominance contribution to the
fragmentation of a charm quark into photons. But we still
have a “non-perturbative” input. Indeed Nason and Web-
ber [21] calculated the fragmentation of a heavy quark or
anti-quark into a photon (actually a gluon in these calcu-
lations) with the result (dropping powers of mQ/Q)

1
σ0

dσγ
Q

dz
(z) = e4Q

α

2π
1 + (1 − z)2

z
ln
M2

m2
Q

+e4Q Cγ
Q(z) (16)

where the direct term Cγ
Q, calculated in the massive FS,

is given by:

Cγ
Q(z) = Cγ(z) − α

2π
1 + (1 − z)2

z
(2 ln z + 1). (17)

Cγ(z) is the direct term in the MS scheme given by (10).
By taking into account BLL corrections one obtains an
expression similar to (12), but in which the kernels are
calculated in the massive scheme and r is replaced by rQ =
αs(M2)/αs(m2

Q). In particular, in the terms

1
2e4Q

1
σ0

dσγ

dz
(n) = − α

2π
2
β0
K

(1)
γQ(n)

1 − r−dn

Q

dn

+Cγ
Q(n) + · · · (18)

one recognizes the FS invariant combination

− α

2π
2
β0

K
(1)
γQ(n)
dn

+ Cγ
Q(n). (19)

Expression (18) can be transformed into the MS scheme
we used in this paper:

− α

2π
2
β0
K

(1)
γQ(n)

1 − r−dn

Q

dn
+ Cγ

Q(n) =

− α

2π
2
β0

(
K

(1)
γQ(n) + δK(n)

)(1 − r−dn

Q

dn

)

+
(
Cγ

Q(n) +
α

2π
2
β0

δK(n)
dn

)
− α

2π
2
β0

δK(n)
dn

r−dn

Q (20)
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with MS expressions

K(1)
γq = K

(1)
γQ + δK (21)

and
Cγ = Cγ

Q +
α

2π
2
β0

δK

dn
(22)

From (21) and (22) we see that we can recover the massive
result (20) by working in the MS scheme, but with a non-
zero input at M2 = m2

Q given by

Dγ,MS
Q (z,m2

Q) = − α

2π
e2Q

1 + (1 − z)2

z
(2 ln z + 1). (23)

Let us end this section by comparing our present ap-
proach with previous BLL studies.

The authors of [17] use a different approach but obtain
similar results for the “non perturbative” input. Invoking
the “perturbative stability”, they choose to work with a
factorization scheme (called DISγ) in which the direct
term Cγ

DISγ
(z) vanishes (more precisely the transverse di-

rect term). Then they assume that the input at M2 = M2
0

is given simply by the VDM contribution.
Using (13), we can translate this input in the MS lan-

guage. In the non-singlet case, we find

Dγ,NP
ns,i = D̃γ,NP

ns,i −Cns,i C
γ
T = Dγ,V DM

ns,i −Cns,i C
γ
T (24)

where ∼ now means DISγ and with

Cγ
T =

α

2π

[
1 + (1 − z)2

z
(ln(1 − z) + 2 ln z)− 2

1 − z

z

]
(25)

valid for any flavour. We see that this expression is fairly
similar to the one we obtained, namely (15) and (23) ; it
produces similiar effects when z goes to zero or one.

The present approach differs from the BLL study of
[2] in which the input Dγ,MS(z,M2

0 ) is equal to zero. This
leads to a different behavior of Dγ

g (z,M2) at small values
of z that we discuss in the next section.

4 Numerical studies
of the anomalous component

In this section, we perform a numerical study of the
anomalous fragmentation function. Later we shall add the
VDM contribution in order to obtain the complete frag-
mentation functions. We solve the DGLAP equation in
which the kernels are massless and take into account the
effect of the mass of heavy quarks by using thresholds
at µ2 = m2

c and µ2 = m2
b with Dγ

c (µ2 < m2
c) = 0 and

Dγ
b (µ2 < m2

b) = 0. Then, the input (23) is introduced
at mc and mb. We use the following values: Λ(4)

QCD =
230 MeV , mcharm = 1.5 GeV and mbottom = 4.5 GeV .

In Fig. 1 we display the anomalous fragmentation func-
tions obtained with M2

0 = 0.5 GeV 2 and the input
Dγ,MS(z,M2

0 ), whereas in Fig. 2 we show the results ob-
tained with the boundary condition Dγ,AN (z,M2

0 ) = 0

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 1. Anomalous component with Dγ,AN (z, M2
0 =

0.5 GeV 2) = Dγ,MS(z)
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2
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Fig. 2. Anomalous component with Dγ,AN (z, M2
0 =

0.5 GeV 2) = 0

(Dγ,MS = 0). The effects of Dγ,MS are important at small
values of z, especially in the gluon case. In both figures,
the gluon fragmentation function is negative at small z.
But the z-range in which the Dγ,AN

g is positive is larger
with the Dγ,MS input.

This small-z behavior of Dγ
g (z,M2) is due to BLL cor-

rections to the LL solution which does not show such
a pattern. The BLL kernels have a singular behavior at
small z:

K(1)
γg (z) ∼ TR

2

(
16
3

ln z
z

)
P (1)

gq (z) ∼
{

2Nf CF CG

(
−4

ln2 z

z

)
+O

(
ln z
z

)}
P (1)

gg (z) ∼
{
C2

G

(
−4

ln2 z

z

)
+O

(
ln z
z

)}
. (26)
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10
0 

G
eV

).
10

3
VDM input at Q0

2
 is null

Leading singularities in kg
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Fig. 3. Comparison of the anomalous gluon fragmentation
functions with a null input at Q2

0 = 0.5 GeV 2 and various
singularities removed from kernels

The effect of the BLL inhomogeneous kernel K(1)
γg is par-

ticularly important, because the Leading Order term van-
ishes (K(0)

γg = 0). If we drop the most singular term (26) of
K

(1)
γg (z), we obtain a gluon fragmentation function which

becomes negative only at very small values of z (z <
3.10−4) (Fig. 3) where the effect of the homogeneous ker-
nels is important. When the singular behavior of P (1)

gg and
P

(1)
gq are also removed, the fragmentation function is pos-

itive.
The z-domain in which the singular parts of the ker-

nels are important has not been explored by experiment.
At LEP, we have z & .7 and in large-p⊥ experiments
< z >' .5, far from the region where Dγ

g (z,M2) is neg-
ative. Therefore it is not necessary to treat this small-z
region more carefully by resumming to all orders the sin-
gular terms (26).

When z → 1, the kernels are also singular and the
quark fragmentation functions are dominated by the BLL
inhomogeneous contribution

Dγ
q (n,M2) ∼ − α

2π
e2q

K
(1)
γq (n)

P (0)(n)

∼n→∞ α

2π
e2q

CF ln2 n/n

2CF ln n

=
α

4π
e2q

ln n

n
(27)

showing that

Dγ
q (z,M2) ∼ α

2π
ln

1
1 − z

. (28)

In the cross section (8) this logarithmic term is cancelled
by contribution coming from C

(1)
q and Cγ ; as a result,

the cross-section is regular when z → 1.

5 Vector dominance model
and non-perturbative input

In the Vector Dominance Model, the photon is described
by a superposition of vector mesons (we neglect the J/ψ
contribution)

γ =
g√
2

(
ρ+

ω

3
−

√
2

3
φ

)

= g

(
2
3
(uū) − 1

3
(dd̄) − 1

3
(ss̄)

)
(29)

where g2 ' α. In e+e−-annihilation, the final quark (or
antiquark) first fragments into a vector meson (or a (qq̄)
state of spin 1) which is coupled to a photon through (29).
From (29) we obtain

Dγ,V DM
q = g2

(
4
9
D(uū)

q +
1
9
D(dd̄)

q +
1
9
D(ss̄)

q

)
(30)

where D(nn̄)
q is the fragmentation function of quark q into

the (nn̄) bound state. We assume that the fragmentation
of the quark q into the nn bound state is given by the
fragmentation into a ρ-meson:

D(qq̄)
q = 2Dρ0,v

q +Dρ0,s
q

D
(qq̄)
q′ 6=q = Dρ0,s

q′ . (31)

Dρ0,v
q is the “valence” part for which the ρ0-meson con-

tains the quark q and Dρ0,s
q is the “sea” part for which

the quark q does not enter the meson. The factor 2 comes
from the SU(3) wave function of the ρ0-meson. We can
express the VDM fragmentation function (30) in terms of
the quark and gluon fragmentation into ρ0-meson.

We use data from ALEPH [7] and HRS [22] (
√
s =

29 GeV ) in order to constrain Dρ
q (z,M2) and Dρ

g(z,M2).
We found that data from MARK II [23], TASSO [24] and
DELPHI [6] are not compatible with those from ALEPH
and HRS. Because HRS has the greatest statistics, we have
chosen the latter. Since data from JADE [25] does not add
constraints, they was not taken into account.

We use the following parametrization of the fragmen-
tation functions at Q2

0 = 2 GeV 2 for the gluon and the
quarks up, down, strange and charm and at Q2

0 =
m2

b GeV
2 for the quark bottom:

Dρ,v
u (x) = Dρ,v

d (x) = NV xαV (1 − x)βV

Dρ,s
u (x) = Dρ,s

d (x) = Dρ,s
s (x) = NS xαS (1 − x)βS

Dρ,s
c (x) = Nc x

αc(1 − x)βc (32)

Dρ,s
b (x) = Nb x

αb(1 − x)βb

Dρ,s
g (x) = Ng x

αg (1 − x)βg

We reduced the number of free parameters in order
to avoid too strong a correlation between them. We make
the assumption that the behavior of the c and b quarks
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Fig. 4. Comparison between ALEPH data and predictions
corresponding to set I and II. Black dots correspond to points
used in the fits

is related as follows: αb = αc and βb = βc + 2. Further-
more, the exponents αa are fixed. First, we found that it
is not possible to fit HRS and ALEPH data if we keep
the HRS point at x = 0.652. For this reason, we made
the fits without this point. Then, in a first fit, we fixed
βg (set I). When comparing the ratios Dπ0

g /Dπ0

u (we used
results from [26]) and Dρ

g/D
ρ
u, we noticed that the former

is bigger by a factor of 3 to 10 (depending on the value of
x and Q2) than the latter. Because the difference between
non-perturbative mechanisms of fragmentation into ρ0 or
π0 should be reduced in these ratios, they should be of
the same order. Therefore our gluon fragmentation func-
tion which is not well constrained by our e+e− data is
probably too small. Thus we performed a second fit for
which we fixed Ng in order to obtain a ratio Dρ

g/D
ρ
u of

the order of the same ratio for pion (set II). The values of
the parameters are shown in Table 1. We can see that the
increase of Ng implies a decrease of the normalization for
the heavy quarks. We plot on Figs. 4 and 5 the compari-
son between fitted data and computed cross sections. The
χ2

dof is equal to 1.33 for set I and 1.22 for set II.

6 Full fragmentation functions
and comparison with experiment

We obtain the complete fragmentation functions by
adding the VDM contributions to the anomalous contri-
butions. They are given in Fig. 6, 7 (for M2 = 100 GeV 2)
and Fig. 8, 9 (for M2 = 104 GeV 2).

The results of Fig. 6 and 8 correspond to set I of par-
ton into ρ-meson fragmentation functions discussed in the
preceeding section, whereas those of Fig. 7 and 9 corre-
spond to set II. We notice a sizeable difference only for
the gluon fragmentation functions; in this case the VDM
contributions are very different. On the other hand the
VDM contributions to the quark fragmentation functions
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Fig. 5. Comparison between HRS data and predictions corre-
sponding to set I and II. Black dots correspond to points used
in the fits
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Fig. 6. The fragmentation functions at Q2 = 100 GeV 2

are small and the curves of Fig. 6 to 9 are very similar
to the corresponding curves of Fig. 1. These distributions
can be compared with those we obtained in [2] (Fig. 10 to
13). The latter are larger at small z and not too large Q2,
the difference being essentially due to a different VDM in-
put. In [2], we assume that the fragmentation in ρ-meson
is similar to the fragmentation in π0 and we use the distri-
butions Dπ0

a of [7] as VDM input. In this paper, the input
we obtained after a fit to data is much smaller.

In Fig. 10, we compare our results with the LL para-
metrization of Duke and Owens [12]. However one must
keep in mind that BLL distribution functions are factor-
ization scheme dependent, and that our distributions are
calculated in the MS scheme. A better comparison is pro-
vided by the cross section dσγ/dz, an invariant observable
which can be compared to experiment.

At present, there is no data with which to compare.
ALEPH data could seem to be a basis for comparison,
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Table 1. Fitted parameters for the fragmentation functions to ρ. The exponents
αa are fixed

set I
N α β

valence (u,d) 0.785 -0.5 1.499
sea (u,d,s) 0.111 -1 2.912
c 0.567 -1 5.502
b 1.020 -1 7.502
g 0.108 -1 3

set II
N α β

valence (u,d) 1.140 -0.2 1.693
sea (u,d,s) 0.100 -0.3 3.437
c 0.132 -1 4.820
b 0.103 -1 6.820
g 2.550 -0.3 3
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Fig. 7. The fragmentation functions at Q2 = 100 GeV 2
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Fig. 8. The fragmentation functions at Q2 = 10000 GeV 2

but it is produced by an analysis in jets. Following [3],
this Collaboration defines the fragmentation into a photon
within a jet. The fragmentation function Dγ

jet defined in
that way does not correspond to the functions calculated
in this paper which are fully inclusive ; we do not put
any limitation on the phase-space of the hadrons which
accompany the photon.
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Fig. 9. The fragmentation functions at Q2 = 10000 GeV 2
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Fig. 10. The fragmentation function for gluon and quark up
of our sets of fragmentation functions compared with those of
Duke-Owens at Q2 = 100 GeV 2. For the quark, set I and set
II cannot be distinguished

In order to better understand the difference between
ALEPH results and our predictions, let us consider the
decay of a Z-boson (of momentum Q) into a photon (p1), a
quark (p2) and an anti-quark (p3). We define zi =
2pi.Q/Q

2 and yij = 2pi.pj/Q
2, where z1 is the inclu-
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Fig. 11. Comparison between ALEPH data and our predic-
tions for the direct production of photon

sive photon fragmentation variable. We have 1 − zi = yjk

(i,j,k different) and
∑

i<j yij = 1. The variable used by
ALEPH to describe the photon in the jet (here the jet is
made of the photon and the quark) is zγ = z1/(z1 + z2) =
z1/(1 + y12). However an integration is performed on y12
within the jet, so that the effective value zeff

1 at which one
should compare our results is larger than zγ . But if we as-
sume that the largest contribution to the integral comes
from the collinear region y12 ≈ 0, we obtain z1 ≈ zγ .
Hereafter we use this assumption.

One must also notice that the ALEPH Collaboration
uses the Durham algorithm [28] to define a jet. According
to this algorithm, ymax

12 = (1 − zγ)/(1 + zγ); therefore
the scale in the fragmentation function is no longer Q2,
but (1 − zγ)/(1 + zγ)Q2/zγ (the extra 1/zγ comes from
the fact that in the inclusive case ymax

12 = z1Q
2 and this

factor z1 ≈ zγ is already included in our calculation).
Finally, one must keep in mind that higher order QCD

corrections to the qqγ process can generate logarithms
of the jets parameter (e.g. ycut) coming from the limited
phase space integration, which are not present in the fully
inclusive case. However for zγ large enough, ycut does no
longer constrain the phase space and the comparison be-
tween our predictions and ALEPH results is not spoiled
by this effect.

This comparison is shown in Fig. 11 for 2-jets events
and ycut = 0.1. We display our predictions for two scales in
order to exhibit their sensitivity to the latter. The agree-
ment is quite satisfactory. It is interesting to notice that,
in this zγ-region, one essentially tests the anomalous com-
ponent of the fragmentation functions; once Q2

0 is chosen,
these parts are a pure prediction of the perturbative QCD.
Q2

0, which is of the order ofm2
ρ, caracterizes the border be-

tween the perturbative and non perturbative regions (cf.
(6)).

7 Conclusions

We have studied the parton to photon fragmentation func-
tions beyond the leading order. We recalled that the tradi-
tional decomposition of this functions in non-perturbative
and anomalous parts depends on the photonic factoriza-
tion scheme. Performing a careful analysis of this depen-
dence, we propose a new definition of the perturbative
and non perturbative components. In this approach, all
the scheme dependence is put in the perturbative part. By
using a VDM approach, we constrain the non perturbative
component of the fragmentation function that we deduced
from parton to rho fragmentation functions. The latter
was obtained from a fit to LEP and PEP data. Finally,
we propose two new sets of parton to photon fragmenta-
tion functions1. We used them to give new predictions for
the production of direct γ at LEP that agree well with
experimental data. However, these data obtained by an
analysis in jets are not fully inclusive and they do not ex-
actly coincide with our inclusive fragmentation functions.
Therefore, fully inclusive data for direct photon produc-
tion would be very interesting, as they would allow to test
a beautiful prediction of perturbative QCD.
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